
In-database Auditing Subsystem for Security
Enhancement

Bašić, Bjanka; Udovičić, Petra; Orel, Ognjen

Source / Izvornik: MIPRO 2021 : proceedings, 2021, 1883 - 1888

Conference paper / Rad u zborniku

Publication status / Verzija rada: Published version / Objavljena verzija rada (izdavačev
PDF)

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:102:428682

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-05-06

Repository / Repozitorij:

Digital repository of the University Computing
Centre (SRCE)

https://urn.nsk.hr/urn:nbn:hr:102:428682
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.srce.unizg.hr
https://repozitorij.srce.unizg.hr
https://repozitorij.unizg.hr/islandora/object/srce:504
https://dabar.srce.hr/islandora/object/srce:504

In-database Auditing Subsystem for Security
Enhancement

B. Bašić*, P. Udovičić*, O. Orel*
*University of Zagreb, University Computing Center, Zagreb, Croatia

{bjanka.basic, petra.udovicic, ognjen.orel}@srce.hr

Abstract—Many information systems have been around for sev-
eral decades, and most of them have their underlying databases.
The data accumulated in those databases over the years could be
a very valuable asset, which must be protected. The first role of
database auditing is to ensure and confirm that security measures
are set correctly. However, tracing user behavior and collecting
a rich audit trail enables us to use that trail in a more proactive
ways. As an example, audit trail could be analyzed ad hoc and
used to prevent intrusion, or analyzed afterwards, to detect user
behavior patterns, forecast workloads, etc.

In this paper, we present a simple, secure, configurable, role-
separated, and effective in-database auditing subsystem, which
can be used as a base for access control, intrusion detection, fraud
detection and other security-related analyses and procedures. It
consists of a management relations, code and data object gener-
ators and several administrative tools. This auditing subsystem,
implemented in several information systems, is capable of keeping
the entire audit trail (data history) of a database, as well as all
the executed SQL statements, which enables different security
applications, from ad hoc intrusion prevention to complex a
posteriori security analyses.

Keywords—audit trail analysis; database forensics; database
security; in-database auditing; SQL trigger

I. INTRODUCTION

In the modern era the creation and consumption of data
is constantly growing. Actions must be taken to promote
and implement the best practices of data protection. Database
auditing allows us to track our users actions and provides the
base for database forensics. It is a control mechanism designed
to track the use of database resources and authority. When
database has some sort of auditing mechanism in place, each
audited database operation creates an audit trail that must
include information such as what data was impacted, who
performed the operation, and when. It is important to keep in
mind that auditing is not a goal but a means to achieve more
secure environment [1], so audit trails must be maintained
over time to allow auditors to perform in-depth analysis of
access and data modification patterns. The main purpose of
these analyses is to prevent further security threats by detecting
violation of security settings, which are in detail discussed in
[2], [3].

There are several ways of recording audit trail:
• within a database management system (DBMS): Com-

mercial (or open-source) DBMS typically include some
form of trace recording. The trace recording mechanism
itself can be implemented as a process that actively
observes the same memory blocks in which the DBMS

maintains its operational memory structures, or as a by-
product of the system operation itself.

• within a database: The implementation of such a trace
recording solution it is necessary for developers to add
program code that will record the trace with the desired
data within each trigger that is triggered on the event to
be monitored. If the trigger for the observed event does
not already exist, it must be added to the database. All
of this makes this trace recording method quite complex
to implement and maintain.

• using external auditing software / hardware: Many
DBMSs have several common architectural features, such
as writing logical logs, using shared memory or imple-
menting other change data capture mechanisms. These
features allow the construction of external trace record-
ing systems. External trace recording systems store the
recorded trace in isolated locations - in other databases
or files that may be on the database server itself or better
yet, on another server.

Regarding the events in the database, there are several
different kinds that could be audited:

• logging in and out,
• data definition language (DDL) operations,
• SQL errors generated by users,
• changes in database objects (e.g. stored procedures, trig-

gers, permissions, synonyms),
• data change,
• data retrieval,
• audit rules definitions.

In this paper, we present a simple in-database auditing
subsystem capable of keeping the entire data history (data
change, including audit rules definitions) and all executed
SQL statements. It has been proven reliable source of data
for the detection of both simple and complex investigations.
The main contribution of our work is the in-database code
generator, a set of database procedures and triggers which
automatically handles all the necessary objects needed for
auditing to perform, based on configuration tables. This part
of the code is open-sourced by us.

The paper is organized as follows. Chapter II reflects on
related work regarding database auditing. The architecture
of the auditing subsystem and in-database code generator
are discussed in chapter III. Role separation concerns are
addressed in chapter IV, while next chapter shows the measures

MIPRO 2021/SSE 1883

of performance overhead with in-database auditing in place.
Chapter VI brings information of current implementations of
presented auditing method and discusses the possible future
work. Finally, chapter VIII concludes the paper.

II. RELATED WORK

Commercial or open-source DBMSs (such as Oracle, MS
SQL Server, IBM Db2, IBM Informix, PostgreSQL, MySQL,
...) typically include some form of auditing. For example, in
PostgreSQL [4] basic statement auditing can be done using
the standard logging facility with log_statement = all.
This is acceptable for monitoring but should be avoided
because it produces huge files that need special parsing to
get normal audit trails and then still does not provide the level
of detail required for an audit. Instead, it is recommended
to use free PostgreSQL tool pgAudit [5] which provides
detailed session and/or object audit logging via the standard
PostgreSQL logging facility.

There are also numerous third-party solutions available for
database auditing. They offer a number of options for what
will be recorded and how to record audit trail.

ApexSQL Audit [6] is a SQL Server database auditing
tool for capturing data and schema changes, that is added
to existing database and on it implements additional triggers
whose sole purpose will be auditing. It stores all auditing
information in a central repository table. Triggers are based
on templates that can be customized and it is easy to add and
maintain large number of them. It is intended exclusively for
working with the Microsoft SQL Server database management
system.

Oracle Audit Vault and Database Firewall [7] combines
auditing and network-based monitoring. It monitors database
traffic to detect and block threats, as well as enables com-
pliance reporting by consolidating audit data from databases,
operating systems, and directories. The audit vault server
contains an Oracle database with all auditing information, and
makes it available to reporting tools through a data warehouse
[8]. Its advantage is that it can be used with heterogeneous
databases and it has support for newer versions of most popular
DBMSs.

Nowadays there is no explicit need for outside solutions
since all databases provide auditing features. One of the most
basic features is triggers that can be adjusted to enable row
level auditing of DML statements. Given that triggers are often
used for auditing scenarios pertaining to DML queries, it is
natural to consider extending it to SELECT queries for data
auditing. It is not a simple extension because usually SELECT
queries contain enormous amounts of tuples and recording
all of them would quickly suffocate audit database. One of
the solutions is presented in [9], where number of tuples for
which an audit record will be made was reduced by auditing
only what was perceived as sensitive data. We decided for
a different approach, to let audit administrators define what
should be audited and available for further analyses.

In addition to selecting methods used to implement auditing
subsystem, it is important to make a sustainable auditing

model. As seen in [10], secure database management system,
aside from being able to effectively record history of all
operations in the database, must also have a good support
for querying that history. We will present auditing model
that satisfies both requirements. Similar model to ours is
given in [11] but with more emphasis put on improving
Chain of Custody property, while our focuses more on overall
development of effective auditing subsystem.

III. ARCHITECTURE

In this section, our audit database model and auditing
objects are presented.

A. Formal description

The auditing database RDB is a relational one, and it
consists of n relations Ri. Each relation Ri has a schema:

Ri(ai,1, . . . , ai,m), (1)

where ai,k is kth attribute of relation Ri.
It is possible to perform four basic data operations over

relation Ri: creating a new tuple, reading it, updating and
deleting it (CRUD). These operations map to SQL as INSERT,
SELECT, UPDATE and DELETE, respectively:

O ∈ {select, insert, update, delete}. (2)

Also, apart from SELECT, the other three operations are part
of data manipulation language (DML):

M ∈ {insert, update, delete}. (3)

For each relation Ri being audited, database RDB is
expanded with a new relation R′i for auditing information
pertaining to relation Ri. Beside all attributes contained in
the original relation, audit relation R′i contains information
describing a specific event affecting the tuple: which operation
was performed, who performed it and when.

Definition 1. Let A be a set of attributes:

α :=(operation
, user
, transaction time stamp
, session
, operation time stamp
, operation type). (4)

Let Ri ∈ RDB. Then audit relation R′i consists of set of
attributes:

(ai,1, . . . , ai,m) ∪ α. (5)

The execution of operation M in relation Ri initiates the
generation of an audit record in the corresponding audit
relation R′i, for all relations that have auditing enabled.

Our proposed architecture, beside working database RDB,
contains also a historic auditing database (HDB) for preserva-
tion of older audit records. Each database relation Ri has a
corresponding audit relation Hi in HDB, which has the same

1884 MIPRO 2021/SSE

Figure 1. Database auditing subsystem (black arrows represent row-level DML auditing, red arrows represent SQL statement auditing).

relational schema as R′i ∈ RDB. In order to reduce negative
impact on performance of the database RDB, relations R′i
in that database only preserve auditing information of a short
period of time, before it is periodically transferred to HDB by
a backup history process. To effectively query all data history,
a view is created for each relation Ri in which the whole
auditing history of that relation is available.

Definition 2. View Vi of auditing history of Ri ∈ RDB is
union of relations R′i ∈ RDB and Hi ∈ HDB:

Vi = R′i ∪Hi. (6)

Most of what was previously described is pertaining to row
level auditing of DML operations. Another interesting aspect
of auditing is auditing of SQL queries. Since row level auditing
writes one entry for each row being affected in any way, it is
highly impractical for keeping track of SELECT queries in
particular, which may result with great performance overhead.
Therefore, in order to keep track of SQL statements (DML, as
well as SELECT statements), we introduce auditing of SQL
queries. Unlike before, for SQL auditing the database RDB is
expanded with only one relation Rsql.

Definition 3. Let Rsql be a relation containing auditing
information about SQL queries. Its relational schema has
attributes:

(session
, table name
, operation
, user
, host name
, terminal
, transaction timestamp
, operation timestamp
, sql). (7)

For all relations that have SQL auditing enabled, the exe-
cution of operation O in relation Ri initiates the generation
of an audit record in the audit relation Rsql.

Same as before, there is relation Rsql in database HDB
containing older auditing information and view Vsql that
combines Rsql from both databases.

The configuration of the auditing and its operation is done
via a special set of relations, here referred to as system
relations, Sj . These relations contain information about each
relation Ri in the working database: is it enabled for row
level DML auditing, is it enabled for SQL auditing and if
so, which operations are being audited; exclusion lists for
auditing, both user- and server-wise; and is auditing enabled
in general or not. We regard Sj as an audit-definition relations.
Maintenance of these relations is done through the interface
of a utility DbAdmin, application designed to help database
administration.

The architecture described is pictured in Fig. 1. Now we will
explain in more detail how the generator procedure works.

B. In-database code generators

Previously described model contains many auditing objects
and is complicated to maintain if the whole process is done
repeated manually. However, it is automated by implementing
a set of procedures which generates SQL code that is used
to create all audit objects. The main procedure is called
automatically (triggered) after auditing information has been
inserted into auditing-definition relations Sj .

The generator is a stored procedure that orchestrates others,
regarding the audit configuration in Sj relations, and conse-
quently generates all auditing objects in nine steps:

1) generate auditing relation,
2) generate auditing triggers,
3) generate triggers on auditing relation,
4) generate permissions to user for backup history,
5) generate auditing view,
6) generate backup auditing relation (in HDB),

MIPRO 2021/SSE 1885

7) generate indexes for backup auditing relation (in HDB)
8) generate triggers on backup auditing relation (in HDB),
9) generate permissions to user for backup history (in

HDB).
The implementation of steps 1, 5 and 6 is straightforward using
what we defined in III-A. In step 2 seven types of triggers are
created. First, three triggers for all operations M on relation
Ri, which insert a tuple of the form (5) in R′i. Second, four
triggers for operations O on relation Ri, which insert a tuple
of the form (7) in Rsql. Steps 3 and 8 are added to keep
the integrity of audit relations (prevent change of audit trail),
while steps 4 and 9 enable the process of moving current audit
data to historic database HDB. The creation of Rsql in both
databases is not part of these steps, because it is done only
once at the beginning of including auditing in database.

For automation of generating objects to be possible we
needed to develop naming conventions for all auditing objects,
consisting of original relation name and some sort of prefix
or postfix. Other parts of SQL statements are hard-coded and
use information from system tables.

Parts of our code, for which we have given description here,
are implemented in IBM Informix dialect and open-sourced at
[12].

C. Backup History process

As was already mentioned, Backup History process has a
task of moving tuples from auditing relation in database RDB
to corresponding relation in database HDB, including a Rsql

relation. Process is executed in even periods of time, which
in our case is one day. It connects to both databases and then
repeats steps:

1) read a tuple from auditing relation in RDB,
2) insert it in relation in HDB,
3) delete it from RDB.

For productivity purposes, instead of moving one tuple at the
time it moves blocks of tuples.

IV. ROLE SEPARATION

Role separation is a way of ensuring audit trail could be
trusted, by separating three roles involved in auditing process.
One role defines the auditing process, i.e. what should be
audited. Second role controls the auditing process, i.e. starts
and stops auditing, and the third role is the one that reads the
audit trail. None of these roles should not be implemented in
a single person.

Our proposed subsystem partially enables role separation,
by giving separate permissions to roles (called audit-definition,
audit-control and audit-read) in the databases. The audit defi-
nition is done by working with data in Sj relations, so CRUD
permissions for these tables should be given to audit-definition
role. Other roles can only read these relations. Audit control is
done by toggling the master audit switch in one of the system
relations, which means only the audit-control role should have
CRUD permissions on that particular table, while others can
have read-only access to it. And lastly, all of the audit trail
in RDB and HDB database should be only read by audit-read
role, while all other roles should not have any permission on
them. Also, any operations on Sj relations should be audited
as well, by default.

The only issue remains tampering with audit objects by
a database administrator role (DBA) or a database system
administrator role (DBSA). However, if a DBMS supports
auditing of its own and it supports role separation, it is possible
to combine our method with it. Actions like changing audit
triggers, disabling them or dropping audit tables, should be
audited by a DBMS audit system. That way, a complete audit
trails security could be achieved.

V. PERFORMANCE OVERHEAD

For the purposes of measuring performance overhead, test-
ing was performed using the Apache JMeter [13]. In the
test, each SQL statement is being executed on the testing
database, by a JMeter testing threads. The testing thread
executes statements via JDBC (Java Database Connectivity)

Figure 2. DML auditing test results.

1886 MIPRO 2021/SSE

Figure 3. SQL auditing test results, auditing enters one record at a time for each executed statement.

Figure 4. SQL auditing test results, auditing enters one record for the statement that effects 100 records.

requests. The duration of JDBC requests with audit on and
off was measured. For DML audit, the duration of DML
operations (3) was tested, while for SQL audit we record
the duration of all four basic data operations (2). Testing was
performed with 1 thread, executing a 1000 operations, which
means that for each of the obtained testing results 1000 JDBC
requests were conducted. In doing so, we record the minimum,
average and maximum duration of the request.

The results of DML audit testing are shown in Fig. 2.
The average overhead per operation is independent of the
operation itself and increases its duration by 1 ms. Such a
result is expected given that in addition to the initially executed
command, another record has to be inserted. The DML audit
testing did not include SELECT command for the reasons
described in Chapter III.

The results of the SQL audit test are shown in Fig. 3. The
first thing to notice is a higher overhead than with DML audit.
The obtained results correspond to the predictions here as well.
Overhead is a consequence of data entry in Rsql (Def. 3) and
steps 1-9 in more detail described in Chapter III.

Important thing to notice regarding SQL statement auditing

results shown in Fig. 3 is that this measurement represents the
worst-case scenario. Our testing statements were all effecting
only a single record in a relation, and SQL statement auditing
enters an audit record once for each executed statement. In
comparison, Fig. 4 shows results of the testing with each
SQL statement affects a 100 records (and one auditing record
entered for each statement). Therefore, for larger operations,
SQL auditing shows acceptable overhead. In both cases of
SQL auditing the average overhead per audit time is from 1
to 2 ms.

Another comment should be put in place regarding the
maximum duration of the operation. Such outliers would
periodically emerge in working with DBMSs, with regard to
relations taking additional space to store data, index rebuilding
due to a B-tree expansion, etc. We did not tune the testing
database in any way to mitigate these actions and influence
the testing results.

VI. CURRENT USAGE AND FUTURE WORK

The audit subsystem described here is currently imple-
mented in four major national information systems in Croatia,
all of them covering the field of higher education and science

MIPRO 2021/SSE 1887

[14]–[17]. Some parts of it are also implemented in some
commercial systems as well. The oldest of these systems has
row level DML auditing implemented for more than a decade.
Throughout this time, data collected in this manner had served
as a source for many analyses - from the basic ones requested
by users, to much more serious investigations.

Information systems security is increasingly important topic.
Gaining knowledge about our systems’ and users’ behavior
could not be possible without considerable amounts of data.
The audit trail collected by method presented here will serve
as a base for different information security-based research:
• ad hoc analyses of incoming audit trail and implemen-

tation of reaction mechanism to prevent overstepping of
given permissions,

• ad hoc analyses of currently performing SQL statements
and implementation of reaction mechanism to prevent
unwanted queries,

• performance-related analyses of executed SQL statements
and proposition for introducing further indexes,

• process mining methods, in order to recognize processes
in the system and define security measures,

• on-line workload analyses, in order to forecast the needs
for increased hardware resources,

• mechanisms and methods for investigation of complex,
multi-user frauds,

• mechanisms for investigating social networks forming in
the complex systems, etc.

Keeping in mind that audit trail is a rich source of temporal
data, these datasets form a solid base for different kinds
of temporal-related research as well, by forming temporal
relational snapshots, temporal graphs, etc.

VII. CONCLUSION

In this paper, a simple, secure, configurable, role-separated,
and effective in-database auditing subsystem is presented. It
consists of several objects inserted in the relational database
(tables, stored procedures and triggers) being audited. These
objects control and perform code generation of other database
objects which, in turn, perform the row level DML operation
auditing and SQL statements auditing as well. Our main
contribution, the audit code generator is discussed in detail. Its
implementation is open-sourced and it is quite simple, taking
only several hundreds of lines of code.

The auditing subsystem described here is easily configurable
and effective - each change in configuration is followed by
redefining of auditing objects and new audit configuration is
in effect immediately. Security and role-separation are simply
enforced by the database permissions, and can be enhanced
by the underlying DBMS auditing subsystem.

We have measured and shown performance overhead of
such an auditing mechanism. Even though there is a significant
performance overhead in general, which is quite expected in
this kind of implementation, our conclusion is that possible
security gain justifies this overhead. Auditing does not have to
performed on all relations, however, some relations hold very
sensitive data. On such data, every action should be audited. It

is up to a auditor to define which relations should be audited,
and in which way.

Lastly, current implementations of this audit subsystem and
future work are discussed. Audit trail being a valuable source
of information, there are many possible directions of future
work. In that manner, this paper serves as a base for the
presentation of our further research activities regarding various
information security topics.

ACKNOWLEDGMENT

The authors would like to thank Ms. Jasenka Anzil of
University Computing Centre, University of Zagreb, for her
contribution on parts of the in-database audit code generator.

O. Orel would also like to thank Dr. Slaven Zakošek of
Faculty of Electrical Engineering and Computing, University
of Zagreb, for his work and mentoring in implementation
of Java-based code generators and parsers years ago. That
joint work has inspired us to build various in-database code
generators.

REFERENCES

[1] R. Ben-Natan, Implementing Database Security And Auditing. Burling-
ton, MA: Elsevier Digital Press, 2005.

[2] T. Y. Lin, “Anomaly Detection: A Soft Computing Approach,” in
Proceedings of the 1994 Workshop on New Security Paradigms, Rhode
Island, USA, 1994 pp. 44–53.

[3] T. F. Lunt, “A survey of intrusion detection techniques,” Computers &
Security, 12(4), 1993 pp. 405–418.

[4] PostgreSQL (https://www.postgresql.org/) [3.2.2021]
[5] pgAudit (https://github.com/pgaudit/pgaudit/blob/master/README.md)

[3.2.2021]
[6] ApexSQL Audit (https://www.apexsql.com/sql-tools-audit.aspx)

[29.1.2021]
[7] Oracle Audit Vault and Database Firewall: Datasheet

(https://www.oracle.com/a/tech/docs/dbsec/avdf-datasheet.pdf)
[29.1.2021]

[8] Oracle Audit Vault and Database Firewall: Tehnical report
(https://www.oracle.com/a/tech/docs/dbsec/avdf20-technical-report.pdf)
[29.1.2021]

[9] D. Fabbri, R. Ramamurthy and R. Kaushik, “SELECT triggers for
data auditing,” in 2013 29th IEEE International Conference on Data
Engineering (ICDE 2013), Brisbane, QLD, 2013 pp. 1141-1152.

[10] B. Kogan and S. Jajodia, “An audit model for object-oriented databases,”
in Proceedings Seventh Annual Computer Security Applications Con-
ference, San Antonio, TX, 1991 pp. 90–99.

[11] D. Flores and A. Jhumka, “Hybrid Logical Clocks for Database Foren-
sics: Filling the Gap between Chain of Custody and Database Auditing,”
in 2019 18th IEEE International Conference On Trust, Security And Pri-
vacy In Computing And Communications/13th IEEE International Con-
ference On Big Data Science And Engineering (TrustCom/BigDataSE),
Rotorua, New Zealand, 2019 pp. 224-231.

[12] O. Orel, P. Udovičić and B. Bašić, Database audit generators
(https://github.com/ognjenorel/ifmx-utils/tree/master/sql/audit)
[29.1.2021]

[13] Apache JMeter (https://jmeter.apache.org/) [29.1.2021]
[14] Higher Education Information System (ISVU)

(https://www.srce.unizg.hr/isvu) [29.1.2021]
[15] Croatian Qualifications Framework Information System (ISRHKO)

(https://www.srce.unizg.hr/en/CROQF-IF) [29.1.2021]
[16] Information System for Support of Evaluation Processes (Mozvag)

(https://www.srce.unizg.hr/en/mozvag) [29.1.2021]
[17] Croatian Research Information System (CroRIS)

(https://www.srce.unizg.hr/en/croris) [29.1.2021]

1888 MIPRO 2021/SSE

